CICEET, Cooperative Institute For Coastal & Estuarine Environmental Technology

CICEET Vision

Clean Water & Healthy Coasts

Who We Are

A Partnership of....

Richard, Langan, Ph.D UNH Co-director

Dwight Trueblood, Ph.D NOAA Co-director

Where We Are

Administrative Offices

Gregg Hall, University of New Hampshire at Durham

Nationwide through the NERRS

CICEET's Toolkit

UNH Stormwater Center Field Site

Research & Workshop Facility

Conventional Structural Designs

Swales

- Particulate Removal
- Nutrients (Vegetated)
- Some Infiltration

Conventional Structural Designs

Surface Sand Filter

- Particulate Removal
- Nutrients (Vegetated)
- **→** High Infiltration

Conventional Structural Designs

Ponds

- Water Retention
- Solids Settling
- Some Nutrient Removal
- Potential Pollution Source
- Incubator for Microbes

Low Impact Development Designs

Bioretention

- ♣ Physical, Chemical and Biological Treatment
- High Infiltration Rates

Low Impact Development Designs

Gravel Wetland

- **♂** Unique UNH Design
- ♣ Physical, Chemical and Biological Treatment
- High Infiltration Rates

Manufactured Devices

Hydrodynamic Separator

- Floatables, Particulate
- Provides No Infiltration
- Can Be Used In Combination

Tools for Clean Water & Healthy Coasts

System Maintenance

- ✔ Time
- Frequency
- Cost
- Manpower

Runoff Hydrograph Reduction

Removal Efficiency Results - TSS

Conclusions From a Year of Data

- LID Systems Have Highest Removal Efficiency
- First Flush Is Observed for a Wide Range of Storms
- Standard of Practice Is Low, Especially for Swales
- Manufactured Systems Have Wide Performance Range
- LID Systems Need to Be Examined for Maintenance Issues
- Cold Climate (frozen filter media) Appears Unproblematic
- 80% Removal Efficiency Is Difficult to Achieve

Conclusions From a Year of Data, Continued

- Vegetated LID Systems Much Better at Nitrogen Removal
- ✔ For DRO: Gravel Wetland, Bioretention, MD Subsurface Infiltration, and Sand Filter Had Highest Performance
- For TSS: Infiltration Systems Have Highest Performance, i.e.
 Gravel Wetland, Bioretention, MD subsurface infiltration, and
 Porous Asphalt
- For Zinc: Bioretention, MD subsurface Infiltration, and the Gravel Wetland Exhibited Highest Removal Efficiencies.

Contact the UNH Stomrwater Center

- ✔ Dr. Robert M Roseen, Co-director (robert.roseen@unh.edu)
- ✔ Dr. Thomas P. Ballestero, Co-director (tom.ballestero@unh.edu)
- ✔ James J. Houle, Co-director
 (jjhoule@unh.edu)

http://www.unh.edu/erg/cstev/

Future Directions for CICEET

- Integrated Technology Transfer
- Stakeholder Advisory Group
- Regional Focus Areas
- CICEET Technology Conference

http://ciceet.unh.edu

